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THEORY OF PLASTIC DEFORMATION FOR MULTICOMPONENT POROUS MEDIA 

A. V. Krivko and A. Yu. Smyslov UDC 539.374 

The creation of dispersed-reinforced materials having specific technical properties 
is achieved by the bonding of heterogeneous metals through plastic deformation of powdered 
mixtures. The properties of the composites formed in this way are qualitatively distin- 
guished from those of the component materials. To a significant degree this is due to the 
presence of pores. Theoretical models of the plastic deformation of porous media can be 
used in the choice of methods and regimes of pressure moulding employed to obtain quality 
manufactured products. In this work we investigate the features of plastic deformation 
of porous media containing dispersed inclusions. A method is employed which gives an ap- 
proximate expression for the composite dissipation function [1-8]. We obtain the conditions 
under which the inclusions behave as rigid particles or deform together with the matrix. 

I. We examine a rigid-plastic material made up of a connecting matrix with a uniform 
distribution of inclusions and pores in it. The matrix and inclusions satisfy the von Mises 
condition with plastic flow limits k 0 and kl, respectively. The problem consists of con- 
structing approximate expressions for the composite dissipation function D*(<Eij>) , which 

in combination with an associated stress rule <oij> = 8D*/8<Eij> determines the plasticity 
conditions [1-8]. Here oij, Eij are components of the stress and plastic strain rate ten- 

sors, and the angular brackets denote averaging of the field over the material volume. 

The dissipation function of the macroscopic medium D*(<Eij>) is obtained as the minimum 
value of the dissipation rate in a unit of macroscopic volume V of the porous body: 

D = -f-  k o g ~ dV + -v" kl ]/r ~ dV ( 1 . 1 )  
v o V~. 

(V = V S + V 2,  w h e r e  t h e  s o l i d - p h a s e  v o l u m e  i s  V S = V 0 + V1; V 0, V1, a n d  V 2 a r e  t h e  v o l u m e s  
of the matrix, inclusions, and pores, respectively). 

By representing the integral over V 0 in the form of the difference between the in- 
tegrals over V S and VI, we have the functional 

D = k 0 < ~/ei jei2 >s - -  ( k0 - -  kl)  < Ve*je~i h ,  ( i .  2 ) 

w h i c h  f o r  k 1 = k 0 r e d u c e s  t o  t h e  e x p r e s s i o n  f o r  t h e  d i s s i p a t i o n  f u n c t i o n  o f  a p o r o u s  b o d y  
w i t h  a h o m o g e n e o u s  s o l i d  p h a s e  [ 2 ] .  The  i n d i c e s  a f t e r  t h e  a n g u l a r  b r a c k e t s  i n  ( 1 . 2 )  s i g n i f y  
a v e r a g i n g  o v e r  t h e  a p p r o p r i a t e  p h a s e .  

Following [2-7], we employ the approximate relations 

where n = i, 2. Using 2eij = vi, j + vj,i, the value of <sij> 2 is determined by the dis- 
placement rate v i at the pore surface according to the Gauss--Ostrogradskii formula. In 
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[3, 4] a qualitative estimate of the first approximation in (1.3) was made. The second 
approximation most closely corresponds to spherically shaped inclusions and pores [4, 5]. 

Using a prime to denote the fluctuation of the field with respect to its average value, 
we write 

e~j = <e~j> + ~j,  <e~je~j> =<eij> <e@ + (e;~e~j). ( 1 . 4 )  

We:introduce notation for the invariants 

I o = f <e~j>(e~j), In = V <e~j)n (e~j)n (n = t ,  2), 
' ' ~ 112 ( 1 . 5 )  

z = + 

By using (1.2)-(1.5), expression (i.i) can be transformed to 

O = k 0 1 / t  - -  c~I - -  kc l I~  ( 1 . 6 )  

( c  n = Vn/V i s  t h e  v o l u m e  c o n c e n t r a t i o n  o f  p h a s e  n ,  k = k 0 - k z ) .  

Averaging over V n reduces to averaging over the entire volume V if the integrand is 
multiplied by the function Kn, which takes the value 1 inside V n and is equal to 0 at other 
points in the material. For such a function 

<En) = Cn, <EIE2) = -- ClC 2, <EnS;j> = C n (<~ij>n -- <Eij>). ( i. 7 ) 

From the assumption of homogeneity of the deformed state of the pores (1.3) and the 
solid phase incompressibility condition for the porous body, we have the relation Skk = 
<sii>2K2, whose average over the macroscopic volume V gives 

( e ~ h ) 2  = ~o/C2, eo = ( ~ h  ). ( 1 . 8 )  

The condition that the functional (1.6) be a minimum for fluctuations v' i leads to 

k o ~ / ~ -  c~ , , ~ , , 
z (~,~ - <~>~ x~,~) - ~ <~J>1~i,~ + ~,~ = 0, (1.9) 

which is supplemented by the incompressibility condition for the solid phase and the Cauchy 
relations written for fluctuations: 

t ~ l t l 

v~,~ = <e~>2• 2~j  = v~,~ + v~,~ ( 1 . 1 0 )  

[p' is the Lagrangian multiplier for incompressibility condition (i.i0)]. 

The solution to system (1.9), (i.i0) in a spectrally dense space with transformation 
parameters gi has the form 

+ 2 7 (1.11) 

Here 

k I ~ ~ =  
ko ~ / i  _--:-F 2 1 : '  

~2 = ~ i $ i ;  t h e  f u n c t i o n s  d i f f e r  i n  t h e i r  f o r m  as  i n d i c a t e d  by a r g u m e n t .  
the deviatoric portions of the tensors. 

; ! 
Solution (i.ii) allows us to express <~ n E ij> in terms of <eli>n, 

Substitution of the appropriate expressions into (1.7) leads to: 

3 <~)2/5 = (1 -- 2~/5) <~j )1; 

[(t + 2c2/3) - -  ~ ? ] ( ~ J ) l  : (~J>, ~ : 2(3 + 2c2 - -  3Cl)/15. 

With the help of (1.7) and (1.9) one obtains [4] 

<'~'ijS'ij> = C2 <8ij>2 (<gij>2 -- <~ij>) -~ ~CI <~ij>l (<~iJ>l -- <S/j>) ~- 
2 

+ - s  <~k~>2 c2 (1 - -  c~), 

(1.12) 

The ~ sign denotes 

(n = i, 2) [I-5]. 

(1.13) 

(1.14) 
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whose use in (1.5) after a transformation using (1.13) and (1.14) gives 

2 (t -- %) 3c,~ ~ 3 (~ - ~) ~ + ~ + _ _  ~, 
= -~ + 2% ~ 3 + 2% 

. '~/3 + 2c~ ~ \ ( t . i5)  

One of the features of porous materials undergoing plastic deformation is their 
strengthening during compaction and softening when decompacted. An increase in the stress 
level in the porous bonding can lead to deformation of the inclusions which are initially 
rigid. The reverse process is also possible, when the material is decompacted and the 
plastic inclusions begin to behave as rigid particles. These features of composite defor- 
mation for fixed loads <oij> occur depending on the properties and concentrations of the 
component materials. 

The volume concentration of inclusions c I = VI/V is a function of the porosity c2; 
therefore below we shall switch to the concentration of the inclusions in the solid phase 
of the material ci* = Vi/T S = const. It is not difficult to show that c I = cl*(l - c2). 
If the inclusions behave as rigid particles (<gij>1 = 0, Ie 2 = (I0/y)2), then I is found 

from (1.15) as a function of the variables I0, ~0, and according to (1.6) we can define a 
dissipation function for a porous body with rigid inclusions 

D~ = k o 1/B(t + c~/?)I~ + Be~/9~ (1.16) 
(~ = c~/(6 + 4c~), ~ = 3(t -- c~)~/(3 + 2c~)). 

In the process of inclusion deformation <sij> l @ O. By using (1.12), the set of equa- 
tions (1.14) leads to 

I, 3 ( ~ r  ~, (~:r/ko V~---n-7~), 
3-[-2% Io q- ko ~----~2 ] I~= 

(1.17 

Substitution of these into (1.15) and (1.16) gives 

k* 1 / t  - c . I  = ko 1/~I~ + g~/9o:; ( 1 . 1 s  

D~ = k* 1/~I~ + t~/90~ - -  ~*•  (1 .  i9  

= * r.2 ~* 3c~(1 -c2)  k* 1/k~- 3c~vk/(3 + 2~); = 
3 + 2% ( 1 .20  

(D2* is the dissipation function for a composite with deformable inclusions). 

The dissipation function (1.16) and the associated stress rule <oij> = 8Dl*/8<Eij> 

determine the conditions of plastic deformation of a porous body with rigid incluions 

�9 2 * ]2 _~ Ol, ( t  2f- Cl/~ ) (~0 = ] ~  (~ + C1/'~) 
(s~ = <~j> <~@, ~o = <~,~>). ( 1 . 2 1 )  

The associated flow rule for plasticity conditions (1.21) is written in the form 

<i~> = ;~ <~j>, eo = ;~3o~ (~t + c~/V)S.  ( 1 . 2 2 )  

Similarly, use of the dissipation function (1.19) allows us to obtain the plasticity con- 
dition 

(! 4 I + k'~*)~ + o~,~ = k * ~  
( 1 . 2 3 )  

and the associated flow rule for a porous body with deformable inclusions 

�9 <~j)  ---- ~2(IJo] + k'~*) <~ij>/IJor, eo = ~23c~cro 

-7~ (1+ol : 7+o) .  
(1.24) 

We have given the conditions for simultaneous deformation of matrix and inclusions and 
also those when the inclusions are rigid. In the first case, composite deformation is de- 
scribed by relations (1.23) and (1.24); the second case by (1.21) and (1.22). 
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2" Let the plastic limit of the inclusions k I be greater than that of the matrix k0: 
then k < O. The condition of deformation of the inclusions I l > 0 and (1.17) require ful- 

fillment of the inequality k0/l - c2.10 + ku > O, whose solution, using (1.18) leads to 

(2+3c )v (2.1) ?eo<V3c~7*/2Io, 7" ~2 5 �9 

If 7* > O, the inclusions either deform together with the matrix or else remain rigid, de- 
pending on whether or not (2.1) is met. It can be shown that 7* > 0 ensures that the ex- 
pression under the radical in (1.20) is also positive. 

Substituting I 0 and m 0 obtained from (1.24) into (2.1), after a transformation using 
(1.23) and expressions for the functions a, B, 7, and 7*, we obtain 

I J o l > a ,  I o o l < b ,  a=--k(l--c~)(2+3c~)/t5, b=--kV?*~/a. (2.2) 

Conditions (2.2) in the o0, J0 plane determine the region where composite deformation is 
described by (1.23) and (1.24). In the region [J01 < a, Io01 > b, equations (1.21) and 
(1.22) are used. 

The simultaneous solution of (1.21) and (1.23) gives IJ01 = a, Io01 =~b, which with 
substitution of IJ0] = a in the first relation of (1.24) transform it to <mij > = 12(i + 

cl*/7)<~ij>. Considering the conditions of differentiability (1.22) and (1.24), it follows 

that the surfaces (1.21) and (1.23) smoothly close down to points with coordinates IJ01 = a, 

Iooi = b .  

Equation (1.21) describes an ellipse with its center at the origin in the o 0, J0 plane, 
and (1.23) describes part of an ellipse 

( 4  + + = (2 .3)  

l y i n g  in  t h e  h a l f - p l a n e  J0 > 0, and i t s  m i r r o r  image in  t h e  h a l f - p l a n e  J0 < 0. 

I n  F i g .  1 t h e  s o l i d  l i n e s  AB and A 'B '  c o r r e s p o n d  t o  ( 1 . 2 3 ) ,  and t h e  c o n d i t i o n s  f o r  t h e  
d e f o r m a t i o n  of  i n c l u s i o n s  ( 2 . 2 ) .  L i n e s  AA' and BB' answer  t o  t h e  p l a s t i c i t y  c o n d i t i o n s  o f  
a c o m p o s i t e  w i t h  r i g i d  i n c l u s i o n s  ( 1 . 2 1 ) .  The b roken  l i n e s  AB and A ' B '  a r e  p a r t  o f  t h e  e l -  
l i p s e  ( 1 . 2 1 )  in  t h e  r e g i o n  where  t h e  p o r o u s  body b e h a v i o r  i s  d e s c r i b e d  by ( 1 . 2 3 )  and ( 1 . 2 4 ) .  
We have  a s i m i l a r  s i t u a t i o n  f o r  t h e  b roken  l i n e s  APB and A ' P ' B '  c o r r e s p o n d i n g  t o  ( 1 . 2 3 ) .  
I t  f o l l o w s  t h a t  f o r  k 1 > k 0 and 7" > 0, t h e  p l a s t i c i t y  c o n d i t i o n  f o r  t h e  c o m p o s i t e  i s  de-  
p i c t e d  by s o l i d  l i n e s  ABB'A ' ,  c o m p r i s i n g  p a r t s  o f  e l l i p s e s  ( 1 . 2 1 )  and ( 1 . 2 3 ) .  The f u n c t i o n  
X* d i e s  o u t  w i t h  i n c r e a s i n g  p o r o s i t y .  T h e r e f o r e ,  in  t h e  d e c o m p a c t i n g  p r o c e s s  t h e  v a l u e  
c 2 = c2"  can be r e a c h e d ,  f o r  which  7" = 0. I n  t h i s  c a s e  t h e  s o l i d  l i n e s  AB and A ' B '  de-  
g e n e r a t e  t o  p o i n t s  on e l l i p s e s  ( 1 . 2 1 )  and ( 1 . 2 3 ) .  
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If u < 0, (2.2) cannot be fulfilled on the surface (1.23). The inclusions behave as 
rigid particles and the deformation of the composite is described by (1.21) and (1.22) for 
all loading paths. In Fig. i, the inner ellipse "breaks away" from the outer and with sub- 
sequent increase in porosity degenerates to the point where k* = 0. 

Now let k I < k0, k > 0. From (1.17) and the condition 11 = 0 it follows that I = I 0 = 
0. That is, the inclusions begin to deform simultaneously with the matrix. Ellipse (2.3) 
in the o 0, J0 plane shifts down from the origin along the J0 axis (lines A'P'B' in Fig. 2). 
Equation (1.23) describes the portion MP'N of it in the region J0 > 0 and its symmetric re- 
flection MPN in the region J0 < 0, that is, the closed curve MP'NP having two cusped points 

M and N with coordinates J0 = 0, Io01 = ~(k*2~ - k8*)/~ ~. J0 = 0 in (i.24) gives rise to an 
indefinite value for gij, corresponding to points M and N on surface (1.23). 

The broken line 1 in Fig. 2 is the plasticity condition (1.21) for a porous material 
with rigid inclusions. For k I = k 0 or cl* = 0, (1.23) and (1.24) are transformed to rela- 
tions for plastic deformation of a porous medium with a homogeneous solid phase [2, 7]: 

J~ + ao~ = ~k~, <ii~> = ~ <~ij>, eo = ~3a~o. ( 2 . 4 )  

The plasticity surface (2.4) is depicted by broken line 2. 

We examine the process of unilateral compression of the material in a compression mould, 
when the transverse displacement is held equal to zero and friction is not taken into ac- 
count. Under these conditions the loading equation (2.4) is used to calculate pressure as 
a function of porosity. It has been shown that the theoretical press curves agree satis- 
factorily with experiment [7, 8]. 

For a porous material with rigid inclusions we obtain, from (1.21) and (1.22), the 
stress in the direction of the deformation 

Vf2 2+a~ ~1 = Yo(~ - ~ )  ~ + ~+ 2 ~ - 3 ~  (~ - ~ )  (2 .5)  

[Y0 is the plastic limit of the matrix under simple tension (compression)]. 

The solid line in Fig. 3 is the press curve for porous titanium with 15% rigid in- 
clusions of Cr3C 2 [9]. The broken line was constructed according to (2.5) for cl* = 0.15, 
Y0 = 240 MPa [i0]. 

Comparison of the theoretical and experimental relations makes it clear that the value 
of the porosity for the pressure computed from (2.5) does not differ from the corresponding 
experimental value by more than 5%. Experimental data reflecting the peculiarities of 
transformation of the inclusions from a rigid state to a plastic one are not available for 
porous materials. 
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THEORY OF ELASTIC-PLASTIC DEFORMATION OF RANDOMLY REINFORCED 

COMPOSITE MATERIALS 

I. S. Makarova and L. A. Saraev UDC 539.378 

Using the methods of the mechanics of random inhomogeneous media, we study the elastic- 
plastic properties of a composite material containing randomly oriented ellipsoidal in- 
clusions. The analogous problem for composites with spherical inclusions and matrix mix- 
tures was solved in [I]. 

i. Let a composite material occupying volume V and bounded by surface S be formed of 
an elastic-plastic matrix and randomly oriented ellipsoidal inclusions of identical form. 
The governing equations for the materials of both components, bonded together with ideal 
adhesion, are given by 

sij = 2~m(e)eij, ~pp ~ 3Km%p, sij = 29f(e)eii, ~pp = 3Kyepp. (i.i) 

Here sij = o i.3 - (i/3)6 ijapp; ei'3 = ei'. ~ - (i/3)6ijgpp; ~ gij are the components of the 
stress and deformation tensors; ~m,f(e) are the plastic shear moduli; Km, f are the bulk 

moduli of the material components (Km, f = const); e = ~ijeij. The index m refers to the 

matrix material; f to that of the inclusions. 

We will describe the structure of the composite by using the indicator function <(3, 
which is equal to zero in the matrix volume V m and to unity in the inclusion volume Vf. In 
addition, the spatial position of the ellipsoids is given by a collection of indicator func- 
tions ~i(~, x~(r) ..... ~n(r). Each function Ks(r) is equal to unity in the volume V s of all el- 
lipsoids oriented in direction s and is equal to zero outside of this volume. Clearly 

• • By using <(r), (i.i) can be written in the form 

sij(r) = 2(gin(e) + (~t(e)-- 9m(e))• ), 
app(r) = 3(K~ + (K I --  K~)• ( 1 . 2 )  

All of the indicator functions, stresses and deformations are assumed to be statis- 
tically uniform and ergodic random fields, and their expectation values are replaced by 
volume-averaged values [2]: 

~---~ t .I / ( r ) d r ( s =  l, 2 . . . . .  n). </> = v I (r) dr, <f>"'J" = ~ vm,,,~ 

To find the macroscopic governing equations and the effective characteristics of these 
composites it is necessary to establish a connection between the macroscopic quantities <oij> 
and <sij>: 

(1.3) 

where Eijks are the components of the plastic moduli tensor, a function of the numerical 
characteristics of the random deformation field eij(r). Here and below an asterisk denotes 
the root mean square of the quantity. 

Samara. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 120-124, September-October, 1991. Original article submitted April 12, 1990. 

768 0021-8944/91/3205-0768i$12.50 �9 1992 Plenum Publishing Corporation 


